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Abstract—Contrary to the static sensor network which requires 

one-time localization, a mobile wireless sensor network (MWSN), 
requires estimation of the optimum time to retrigger the 
localization of the network, to accurately identify the sensor 
location after certain movements.  However, triggering 
relocalization at pre-defined time intervals without proper 
consideration of the dynamic movement of sensors is insubstantial 
and results in poor resource management. In this paper, a new 
algorithm called time-bounded relocalization (TBR) is proposed to 
identify the optimum relocalization time for the entire MWSN 
using the time-bounded localization method based on the analysis 
of the sensors’ mobility pattern. In the proposed algorithm, the 
optimum re-triggering time across the entire network can be 
calculated in two phases: Local and Global Relocalizations. In the 
first phase, an island-based clustering method is used to estimate 
the local relocalization time. Next, the estimated local times are 
then used to decide the optimum global relocalization time based 
on the statistical property of the estimated local times. For these 
calculations, a probabilistic model of the random waypoint (RWP) 
is selected. The soundness of the proposed algorithm is initially 
validated by deriving the probabilistic model of the optimum re-
triggering time and its accuracy is checked by Cramer Rao Lower 
Bound (CRLB). The proposed algorithm is then extensively tested 
by computer simulation using practical network parameters 
including the number of nodes, the size of the network, and various 
sizes of islands depending on the sensor mobility, to yield the 
respective optimum relocalization time. The simulation results 
show that by using the identified optimum relocalization time, the 
location estimation error can be reduced by up to 32% for the 
RWP model as compared with the case of using fixed relocalization 
time.  
 

Index Terms—MWSN (Mobile Wireless Sensor network), 
Relocalization, TBR (Time Bounded Relocalization), Random 
Waypoint (RWP) model, CRLB (Cramer Rao Lower Bound) 
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I. INTRODUCTION 
HE multiple spatially scattered sensor nodes in wireless 
sensor network (WSN) cooperate to pass data toward 

monitoring certain environmental conditions [1, 2]. A Mobile 
Wireless Sensor Network (MWSN) is a WSN including mobile 
sensors. Although the introduction of sensor mobility in the 
network causes several challenges in the new areas of study 
such as energy consumption, connectivity and coverage, recent 
studies have shown the advantages of taking mobility into 
consideration [3], and found that mobile entities can actually 
help  to resolve problems within static networks such as energy 
efficiency [3-5]. One of the main benefits of including mobility 
is tracking of moving objects such as vehicles [6-9] as well as 
collecting data from remote places. Data collection is more 
useful when position information is available. In [10-14] the 
conventional localization methods are described in detail. 
However, the aspect of node mobility and its pattern have not 
been considered. On the other hand, a vast research has been 
done on MWSN localization techniques considering various 
parameters that affect localization such as anchor mobility, 
sensor density and sensing range [9, 15-19]. For example, in 
[16] authors have shown how to guide the mobile’s movement 
to gather a sufficient number of distance samples between node 
pairs for node localization and, in [9] the minimum number of 
mobile sensors that is required to maintain the resolution for 
target tracking in an MWSN is derived. In [19] authors 
proposed a method in which, when a mobile node moves across 
a specific area, the neighboring nodes compute the sequence of 
the node’s movements and predict the target entrance to another 
area.  Although the integration of sensor mobility in localization 
can provide advantages in exact localization, it also brings 
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about the issue of repeatedly localizing the mobile nodes. Due 
to this nature, nodes must be continually relocalized in order to 
maintain a satisfactory estimate of their positions [20]. 
Additionally, this relocalization must happen frequently 
enough to maintain a certain threshold of accuracy-localization 
error. In [21] Monte Carlo Localization (MCL) was proposed. 
MCL method assumes that time is divided into discrete time 
units and node is relocalized in each time unit. A comparative 
simulation study in the performance of MCL was done in [22] 
for four mobility models that shows, localization performance 
is different when node moves with different mobility model. 
However in the mentioned localization methods the optimum 
time intervals to trigger the localization is not studied.  
   In this research to apply localization, a time efficient method, 
called time bounded localization is chosen [23], focused on 
localization within a given time-bound. In this method, sensor 
nodes are localized after a predefined number of k rounds of 
information flooding, followed by stopping of broadcasting 
signals. However, it is no longer adequate for a MWSN that 
needs more frequent relocalization to reflect the dynamics of 
the mobile sensors. In this paper, towards resolving the 
fundamental uncertainty of the relocalization time in the 
dynamic MWSN, a new algorithm is proposed to find the 
optimum time to trigger the time bounded localization 
algorithm by considering the impact of mobile nodes. In this 
algorithm, each island including multiple nodes, is allowed to 
determine the time (interval) to begin relocalization which is 
optimum due to considering mobility and area specification 
rather than choosing a fixed time interval. Towards this goal, 
random waypoint (RWP) [24] mobility model is selected and 
used for mathematical analysis and its applicability is checked. 
For the considered mobility pattern, the proposed relocalization 
algorithm can provide the optimum relocalization interval as 
well as the significant reduction in localization error. 
Additionally, the proposed algorithm is applied to two other 
random movement patterns (Levy walk and Brownian motion) 
to check the applicability of the algorithm for a variety of 
movement patterns. 

The remainder of the paper is organized as follows: A brief 
review of the time bounded localization method along with the 
introduction of RWP mobility pattern, is given in Section II. 
Section III describes the proposed Time Bounded 
Relocalization (TBR) algorithm to identify the best moment to 
trigger the relocalization process in MWSN. The results of 
extensive computer simulations to support the validity of the 
proposed algorithm, are discussed in Section IV followed by the 
conclusion in Section V. 

II. MOBILITY-BASED LOCALIZATION IN MWSN 
In the practical localization techniques for MWSNs, it is 

supposed that there exists a subset of nodes, called anchors, 
which know their locations. Anchors and unlocalized nodes 
move randomly within the network where the minimum and 
maximum velocity of a node are bounded. Anchors and 
localized nodes periodically broadcast their locations. 
However, the exact time to broadcast is not considered 
seriously in literatures, even though it is an important factor to 

save energy consumption and combat with spoofing.   

A. The Initial Time Bounded Localization (TBL) 
To estimate the sensors’ location in a wireless network (both 

static and  mobile),  the Time Bounded Localization (TBL) 
method is applied [23] in this research, where the concept of 
localization within a specific time-bound is commonly 
introduced. In this method, the localization process is 
performed in several rounds of information flooding, which is 
limited to a specific k value. During one round of information 
flooding, a node broadcasts and receives data from all 
neighbors. The number of communication rounds is used as a 
metric to determine the required time to localize the network. 
For a specific value of k, all sensors in a k-hops graph can be 
localized within k rounds of communications, but the anchors 
located at more than k-hops away cannot contribute to the 
localization of the specific node [23]. An upper bound for k can 
be calculated easily. Based on the worst case scenario to 
connect all nodes, if two specific nodes have the highest 
possible distance (such as the rectangle area diagonal), the 
number of hops to connect them can be considered as an upper 
bound for k that depends on the node’s transmission range. The 
coordinates of particular nodes are determined through 
communications between neighboring nodes. They measure the 
distance between them and calculate their locations by using 
location estimation methods such as trilateration or 
multilateration [10]. After k-rounds of information flooding, the 
entire network may be globally localized through 
communications. Global localization is achieved through the 
use of anchor nodes that know their locations in global 
coordinate systems. When there exists a large enough number 
of anchors, the network can always be localized to any time 
bound. However, in practice, there can be only a small number 
of anchors due to the high cost of algorithm.  

In this research, it is assumed that during the first round of 
communication the anchor nodes broadcast messages including 
their locations. Unlocalized nodes, which receive signals from 
at least three anchor nodes, can estimate their distances to the 
anchor nodes and use the three circle intersection formulas to 
estimate their locations. In the next communication round, new 
localized nodes will also broadcast their estimated locations to 
help the rest of unlocalized nodes. As shown in Fig. 1, U1 is 
connected to A1, A2 and A3. After the first round of information 
flooding, it can estimate its location. But, Given that U2 is 
connected to two anchor nodes, U2 should wait until it receives 
location information from U1. When U1 is localized, its status 
will be changed from ‘unlocalized’ to ‘localized’.  It means, for 
U2, it takes more than one round to get localized. 
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Fig. 1.  Schematic of localization process 
 

This process is repeated for the predefined k-rounds. After k-
rounds the nodes stop sending signals, but some nodes still do 
not connect to at least three localized/anchor nodes. These 
nodes are referred to as isolated nodes and are not yet globally 
localized. In static environments, after determining an isolated 
island, fixed anchor nodes can be mounted in such places.   
Simulation of a random network in Contiki [25, 26] examines 
the relation between the number of anchor nodes and rounds. 
Fig. 2 shows that deploying more anchor nodes leads to a better 
result by increasing the number of localized nodes. In one round 
of information flooding, all nodes broadcast their information, 
including their node ID, localization status (localized or 
unlocalized), coordinates and a table including their distances 
to other nodes in their neighborhood. Each node that receives 
the signal from neighboring nodes in its transmission range can 
calculate its distance to them, which results in location 
estimation [10, 13, 27].  

A 500m×500m random network, including 120 nodes, with 
a communication range of 60m is considered as an example. 
For the case when there are 20 to 50 anchor nodes, 4 rounds of 
information flooding are required to complete the relocalization 
process that results in successful localization for 26% to 51% 
of nodes. For 55- 65 anchor nodes, 5 rounds are needed to 
localize 76% to 93% of them. In this case, the maximum 
number of required rounds of communications to connect two 
nodes with the highest possible distance is 12 hops (i.e., 
diagonal/communication range). But after 5 rounds, no changes 
(in term of number of localized nodes) happen. Therefore, to 
save energy and time, nodes stop broadcasting to avoid 
eavesdropping.   

 
 
Fig. 2.  Effects of number of anchor nodes on the number of localized nodes 
and the required information flooding rounds. 
 

 

B. Relocalization in MWSN 
However, to apply the TBL method to a MWSN, due to the 

relative movement of sensors, it is needed to relocalize in a 
given time bound and repeatedly update the localization 
information. One method is the relocalization of the entire 
network, either locally or globally, in the appropriate fixed time 
intervals. However, if relocalization takes place after extensive 
time periods, the accuracy of location estimation will be 
degraded. Inversely, if the same process is continuously 
repeated or performed in shorter time periods, higher costs (in 
terms of power consumption, calculation and message passing) 
will be imposed upon the system.  

Since the major concern of this research in the MWSN is to 
identify the optimum time to trigger the relocalization after the 
successful initial localization, the statistical properties of the 
sensor mobility patterns must be investigated toward the 
development of the relocalization algorithm. For this, some of 
the most widely used mobility patterns are used to calculate the 
optimum retriggering time. Based on the analysis, a generalized 
time bounded relocalization (TBR) algorithm is proposed to 
estimate relocalization triggering time while it can provide 
minimum localization error.  

C. Analysis of Node Movement Patterns   
In a mobile WSN, the localization should repeatedly take 

place to reflect the nodes’ movements. In such circumstances, 
the actual movement pattern of each node significantly affects 
the localization results.  

Each sensor can move independently (i.e. entity mobility 
models) or according to another node’s movement [24, 28-32]. 
The mobility patterns should show the information on 
movements of real sensor nodes, including the speed and 
movement direction during specific time intervals. Since 
moving in a specific manner or a straight line does not provide 
a comprehensive information of sensor nodes to deploy in a 
practical network, some widely suggested [24, 28, 31] random 
movement patterns, are investigated to test the proposed 
algorithm. 

The most popular mobility model to assess mobile-ad-hoc 
network routing protocols is the random waypoint pattern 
(RWP) [24] due to its simplicity and availability. RWP is a 
synthetic model which has several parameters that can be 
adjusted to match with a particular scenario, including mobile 
wireless network and the location of an arbitrary packet in 
multi-hop network [24, 28]. In RWP specifications, nodes move 
along a zigzag path, containing straight legs between two 
waypoints. A node randomly chooses a destination point 
(‘waypoint’) in the area and moves with constant speed in a 
straight line to this point. After waiting a certain pause time, it 
chooses a new destination and speed, and moves with constant 
speed to the destination. The movement of a node from a 
starting position to its next destination is denoted as one 
movement period or transition.  Fig. 3 shows the possible 
movement of a node in a RWP model such that nodes move 
from waypoint Pi to waypoint Pi+1 with velocity vi chosen from 
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a random distribution  fV(v) within [vmin, vmax]. Each node pauses 
at each waypoint, Pi, before moving to the next waypoint.   

 
Fig. 3.  Random waypoint movement pattern.  
 

As mentioned earlier, relocalization in a MWSN should be 
triggered continuously at specific times. For a known 
movement pattern, to estimate the moment to trigger 
relocalization, probability density function (pdf) of node’s 
movement can be exploited. To find the probability of the 
node’s position moving according RWP, it is assumed that in a 
one dimensional space, random points are uniformly distributed 
on a line segment [0, a], hence the pdf of a node’s location (fpx) 
is: 

                                                       (1) 
The probability that node moves from point x1 to x2, with the 
distance of L≤ l, in the x1-x2 space is [33]: 

     (2) 
 For specific distance limitations (0<l<a), the probability of (2) 
and its pdf  are respectively defined as [33]: 
 

         (3) 

In a rectangular area of size a × b, the spatial distribution of two 
dimensional waypoint (P=(Px, Py)) is given by a uniform 
distribution [33]: 

                     (4) 

Where distance between two waypoints P1(Px1, Py1) and P2(Px2, 
Py2) is defined as: 

                                (5) 

 
Since, random distances, Lx and Ly are independent, the joint 
pdf is given by [33]: 

                          (6) 

The CDF can be found by the integration of (6) over the circle 
area lx2+ly2≤l [33]. 

  

Solving these integrals by taking the derivative with respect to 
l and performing trigonometric simplifications leads to the 
following pdf of transition length L of nodes moving according 
to the RWP model in a rectangular area of size a × b, where a 
≥ b, [33, 34]: 

           (8) 

In turn, to estimate the triggering moment, it is needed to 
calculate the transition time T which is the time of a node’s 
transition from one waypoint to the next by moving distance L. 
According to RWP specifications mentioned earlier, it is 
assumed that the velocity is constant during one transition and 
is randomly chosen from a distribution, fV(v). Therefore the 
random variable T is given by,  

                                  (9)  

 Assuming T is a random variable expressed as a function of 
transition length (L) and velocity (V): 

                                                                              (10) 

Since at each waypoint the node picks a new destination 
randomly and moves toward it at a constant random velocity, 
variables L and V are independent [29, 33] and the joint pdf can 
be represented as:  

                                                                 (11) 
Then pdf of transition time T is calculated by: 

                (12) 

Alternatively, E[T] can also be calculated in the term of E[L]: 

                  (13) 

 
For a square area a×a,  fT(t) for l≤ a is calculated using (8) and 
(12): 
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(14) 
To check the validity of the pdf fT(t) in (14), it should be 
determined that pdf has a positive value in the time domain and 
its total probability should be one. To simplify the calculation, 
(14) can be simplified as: 

                              (15) 

By the result, 

                                                  (16) 

Then corresponding mean and variance of transition time T will 
be:  

(17) 

Since the integral of pdf over time duration should be equal to 
one, vmin is assumed to be square root of vmax to meet this 
condition. For the special case of maximum velocity of 25 m/s 
in a 500m×500m area, pdf of (16) is valid in  the time domain 
of (0, 33sec] which is shown in Fig. 4 compared to 
approximated Gaussian pdf which will be discussed later. Mean 
and standard deviation of (17) for time duration (0, 33] are 
16.65sec and 10.2, respectively.  

 
Fig. 4.  Probability density function of transition time (curve 1) and the 
approximated Gaussian pdf (curve 2) for 500m×500m area with maximum 
velocity of 25 m/s  

 

D. Triggering Time for Relocalization: Case of RWP Model  
Relocalization should be triggered at the time close to the 

moment at which a node reaches the next waypoint. Before a 
node transits to the next waypoint, it moves in the same 
direction with the constant velocity based on the RWP model. 
At the waypoint, the velocity is changed and the node moves in 
a new direction, which necessitates new relocalization. To find 
the pdf of relocalization triggering time, it is needed to use the 
pdf of the transition time. Based on the obtained pdf of (16), it 
can be approximated as a Gaussian pdf of (18), where tr denotes 
the random value of the re-triggering time. 

                                                           (18) 

In case of 500m×500m area with a maximum speed of 
25m/sec, the mean and variance of pdf shown in Fig. 4 is used 
to approximate the corresponding Gaussian pdf of the local 
relocalization triggering time using (18). 

E. Cramer Rao Lower Bound (CRLB) of the relocalization 
triggering time-Case of RWP Model 

The pdf is used to estimate the local relocalization triggering 
time. To check the quality of the triggering time estimator, the 
Cramer Rao Lower Bound (CRLB) [35, 36] can be used. CRLB 
on the accuracy of the statistics is obtained by deriving the 
Fisher Information from a partial derivative of the 
approximated pdf of the relocalization triggering time. Using 
the RWP model, it is considered that the triggering times are n 
random samples T1;… ;Tn from a distribution whose pdf is 
f(t;θ), where θ is an unknown variable. The fisher information 
is used to determine the lower bound of the variance of an 
estimator of the parameter θ. Assume that θ" be an arbitrary 
estimator of θ which is a function of triggering time, with 
Eθ(θ")=m(θ), and finite variance. For the independent random 
variables T1;… ;Tn defined as (19), 

                (19) 

And l´, the derivative of ln(t;θ), is found as: 
lnʹ(t;θ)=fnʹ(t;θ)/fn(t;θ). The corresponding Fisher information 
In(θ) is shown as: 

          (20) 

The covariance between θ" and l´(t;θ) is derived by 
considering  Leibniz’s rule to calculate E[l´(t;θ)]: 

 

 
Therefore,  

                                           (21) 

By using the Cauchy-Schwartz inequality and the definition 
of In(θ), 
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            (22) 

The lower bound of variance of the estimator θ"  or Cramer-
Rao inequality is 

                                                                       (23) 

If the information I(θ) increases, the variance of estimator 
decreases, which leads to the enhancement of the quality of the 
estimator. For an unbiased estimator, it can be claimed that: 

                                (24) 

Therefore:   

                                                                           (25) 

The right-hand side of (25) is called the Cramer-Rao Lower 
Bound (CRLB), and under certain conditions, no other unbiased 
estimator of the parameter θ based on an i.i.d. samples of size n 
can have a variance smaller than CRLB. The CRLB of the pdf 
defined in (18) for calculated mean and variance for a 
500m×500m area, including n=100 node sample case, is shown 
in Fig. 5. The minimum value of CRLB is 1.5 when the local 
retriggering tr is around 33 sec. For tr greater than 33 sec, it 
starts to increase rapidly because node reaches to the next 
waypoint and changes its direction. Since in this case the CRLB 
depends on the velocity and size of the area, it will vary for 
different size of area. As is demonstrated in Fig. 5, CRLB is 
calculated for different area dimensions, assuming the identical 
node density (0.0004) and the same maximum velocity (25 
m/s). In all cases the minimum value of CRLB corresponds to 
the time at which a node in the island has a high probability to 
change its movement direction. In other words, CRLB can be 
effectively used to identify the time to trigger relocalization 
locally. 

 
Fig. 5.  CRLB on the variance of estimated local relocalization time for different 
sizes of the area 

 

III. THE PROPOSED TIME BOUNDED RELOCALIZATION (TBR) 
ALGORITHM   

In this section, an algorithm is proposed to calculate the 
optimum time to trigger relocalization. The proposed algorithm 
is also validated using the results of mathematical analyses of 

movement patterns given in Section II.   
The proposed TBR algorithm consists of a two-step 

relocalization procedure for the enhanced resource 
management. In the conventional localization, after the initial 
localization, each node knows its own position as well as its 
neighbor’s within their communication range. In principle, the 
relocalization can be done at every pre-determined fixed time 
interval for the whole area. If the speed of mobile nodes is 
different, it is beneficial to do the relocalization at different 
times for different mobile nodes. However, it is complicated 
and time-consuming to perform the individual relocalization. 
Hence, it would be more advantageous to divide the network to 
several islands (or clusters) and relocalize each island at a 
specific time depending on the average speed of multiple nodes 
belonging to the respective island. This process is called as the 
Step.1: Local Relocalization. To achieve this, it is needed to 
identify the maximum average node speed in each isolated 
island. Upon completion of Step 1, Global Relocalization can 
be performed as Step 2. Eventually the global relocalizing time 
(Tglobal), that properly reflects the variation of island-based local 
relocalization time Tlocal (obtained in Step 1) due to node 
mobility and the characteristics of the different clusters, can be 
optimized.   

A. Method of Clustering 
Toward local relocalization (of Step 1), method of clustering 

matters. To determine islands, Monte-Carlo computation is 
used to repeatedly check if a node still belongs to a cluster. In 
the localization process, results of nodes’ communications can 
provide information on the nodes and their neighbors, with the 
distances smaller than R (communication range). In the 
clustering method used in this paper, a node is randomly 
selected and considered as a core node which is connected to 
several nodes in its communication range, via edges. The end 
node of the edge is also connected to other nodes. The path is 
followed until reaching a node which terminates the path. For 
example, in Fig. 6, node e is connected to d and h in the first 
hop, and node d is connected to b and g. Nodes h, b and g are 
terminated nodes.  All paths that start from e should be followed 
until reaching the terminated nodes and all nodes that are passed 
are considered as a cluster. Then, another node like f is selected 
as a core node and the same process is repeated.  

 
Fig. 6.  Clustering process 

 
In the programming process, all information from M nodes is 

collected in an M×M matrix (here H). For connected nodes i and 
j, the corresponding matrix element (mij) should be one, 
otherwise zero. It is supposed that k elements in row i are equal 
to one which shows k the first hop connected nodes to i.  k 
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corresponding rows are checked to find the second hop 
connected nodes to i. This process continues until all nodes that 
are connected are picked and considered as a cluster. Then all 
the rows and columns that relate to cluster members, will be 
removed from ‘H’ and a smaller matrix would be obtained. In 
several steps, nodes and their linked nodes can be removed from 
matrix ‘H’, to form an island (In). This process would be 
repeated several times to distinguish all N clusters to consider 
them as islands. The process is depicted in Fig. 7.  

 
Fig. 7.  Monte-Carlo process-based Clustering method 

 
After identifying islands, it is time to estimate relocalization 

triggering time in two steps, which are explained as follows:  
Step 1-Local Relocalization 

To identify the proper time for triggering Local 
Relocalization, “border or maximum distance travel (D)” and 
“the maximum average velocity of nodes in an island (v)” are 
included. Each island is relocalized at a time ‘Tlocal’ that is 
estimated from the velocity of island members (nodes) and 
dimension factors of the area. Tlocal1,…, TlocalN are defined for N 
recognizable islands/clusters, including the minimum and 
maximum values as Tmin and Tmax. 

To find the maximum distance ‘D’ that a sensor node can 
travel, two methods are used in this research depending on the 
randomness of the node movement. In the first method, it is 
assumed that a node can move as far as the dimension of the 
area in a time gap between two relocalization processes, which 
is appropriate for indoors. In the second method called 
“Connection Loss (CL)”, the case is considered when mobile 
node loses the connection and exits the area of an island. To 
calculate it mathematically, the distance of the farthest node 
that connected to the mobile node in the island is found (call it 
P): 

                            (26) 

 Where di,k is the distance between mobile node i and 
neighboring node k. Then a circle around the mobile node with 
radius P is considered. Points on the circle are shown by (xc, yc) 
and the number of them depends on the selected ‘n’ in (27) that 
determines the degree of precision of the estimator. Fig. 8 
shows an arbitrary point on the circular area. 

 

        (27) 

 
Fig. 8.  Finding the distance P, using Connection Loss method 
 

Where (xP, yP) is the coordinate of the selected farthest node. 
Next, it is needed to check if the mobile node in the circle area 
still belongs to the specific island (it should be checked for the 
different points at circle border). If it loses the connection, P is 
considered as D to estimate the relocalization time. Otherwise, 
the radius P can be changed by a small incremental step. This 
process should be done for all mobile nodes to calculate the 
time T that is needed for a node to go to distance D with speed 
v. The drawback of the CL method is that, each node should be 
checked online to recognize the moment of losing the 
connection. But in the first method, it is applicable to use the 
available movement history of a node to determine D and v.   

Moreover, we need the speed information of the nodes. 
Nodes can approximate their velocity using different methods 
such as measuring RF Doppler shift of the broadcasted beacon 
[37]. In the simulation part, a random velocity is chosen for 
node which is between minimum and maximum velocities. 
Therefore, during a predefined time interval for global 
relocalizing, each island will be relocalized in a time Tlocal 
(T=D/V) estimated by velocity and dimension of the area using 
(28).  

              

            (28) 

Where v is the maximum mean speed of mobile nodes in an 
island, and j denotes the number of mobile nodes in a given 
island. To find vk, the mean speed of each sensor node in its 
island, the average value of speed is calculated within last 
available T seconds movement history of the specific node that 
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includes ‘n’ times changes in speed. 
 

Step 2-Global Relocalization 
It is assumed that the predefined time interval, Tfix, is defined 

as the time to trigger relocalization globally before applying the 
proposed algorithm. Tfix can be chosen as 2tmax, according to the 
maximum transition time in (12), if the maximum transition 
length and the minimum velocity of a node are known.  In Step 
2, global relocalization time (Tfix) is adjusted based on the 
results of Step 1 (Tlocal1,…, TlocalN). The obtained Tlocal values 
show each island should be periodically localized after Tlocal 
seconds. Thus, a global relocalization time should be beneficial 
for all islands, while considering the main island as our priority, 
because it includes the majority of mobile nodes. Additionally, 
in a mobile network, its topology is changing. So, the clustering 
should be carried out repeatedly, and new Tlocal values is 
obtained at each running of the relocalization algorithm. In the 
following simulation section, the performance of the algorithm 
will be tested for several time intervals to check the validity of 
the proposed algorithm. However, there are some factors that 
affect the performance of the algorithm with respect to the 
identification of  global relocalization time  (Tglobal), based on 
the distribution of Tlocal values obtained from Step 1 using 
clustering method: 

If the standard deviation of Tlocal1,…, TlocalN is small and 
Tmin≤ Tlocal1, Tlocal2,…., TlocalN≤ Tmax, then  the time for global 
relocalization (Tglobal) could be a maximum of twice the Tmin to 
reduce the localization error, but it must be larger than Tmax, 
such that: 

 (29) 
If the standard deviation of  Tlocal1,…, TlocalN is large, which 
shows the higher unpredictability on the moving distances of 
the mobile nodes, the twice the median of obtained Tlocals 
(Tlocal1,…, TlocalN) is appropriate as Tglobal  such that, 

                                                                 (30) 
 Hence, some islands with large Tlocal which is comparable to 

2Tmed, should be relocalized once after 2Tmed (sec), while 
islands with a smaller Tlocal are localized two times. In other 
words, some nodes need to be relocalized after a longer time 
gap. In both cases, Tglobal is compared with Tfix, which is 
mentioned in Function 3 in Algorithm I.  

The relocalization process reflecting the above discussion is 
shown in Algorithm I and will be used to obtain the global 
relocalization time. In the proposed algorithm, the maximum 
velocity of a node is assumed to be known and the average 
speed of each node, vavg is used to calculate the travel distance 
during Tlocal. It is also assumed that there are I islands with J 
mobile nodes in the island.   

 
 
 
 
 
 
 
 

 
 
 

ALGORITHM I 
 RELOCALIZATION TIME ESTIMATION 

 
 
According to the Algorithm I, each island is localized at a 

time Tlocal and the whole network can be globally localized at 
predefined time Tfix or Tglobal.   On the other hand, for networks 
with high node density, all nodes can be connected, which leads 
to having just one island, resulting in one value for Tlocal at 
which the whole network will be relocalized globally. To be 
consistent in using proposed method of Algorithm I, in a 
network including whole nodes connected, Tlocal and Tglobal will 
be reported separately, so that Tglobal is twice Tlocal. The same 
process will be repeated after completion of algorithm. The 
local relocalization will be triggered after Tlocal. The complete 
proposed relocalization process is shown in the flowchart of 
Fig. 9. Note that the value Tcurrent refers to the current time 
during simulation and Tk-1 denotes the estimated time to trigger 
relocalization at the most recent relocalization run (k indicates 
the relocalization round number). 

maxmin2 TTT global >=

max2 TTT medglobal ³=

Function 1 
  Move mobile nodes 
  
Main function 
  For i=1:I 
    For j=1:J 
 
     Estimate the average velocity of the nodes at      
each island 
     Calculate the average node velocity if it is 
not directly available (Vji) 
 
    End 

Select and save the highest average     
velocity 

Find the further distance that mobile node 
can go (D)  
Find the needed time to travel to D (Tlocal)  

  End 
 
Function 2 
Trigger the local localization for each Island in 
calculated time (Tlocal)  
 
Function 3 
Find Tglobal 
  If Tglobal <Tfix 
    Trigger the global localization in Tglobal   
  Else  
    Trigger the localization at Tfix 
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Fig. 9.  A flowchart of proposed process to trigger relocalization for several 
time intervals 

 

IV. NETWORK SIMULATION USING THE PROPOSED TBR 
ALGORITHM 

A. Test of TBR algorithm with Random Network Topology 
Matlab based computer simulation is used to test the 

proposed time bounded relocalization algorithm. To properly 
reflect the characteristics of different clusters that do not share 
any common nodes, a network model with randomly distributed 
nodes is considered. To find the appropriate local relocalization 
time Tlocal, the number of nodes is initially varied in the fixed 
network size of 500m×500m and the relocalization triggering 
time, Tglobal, is calculated based on Algorithm I (assuming the 
communication range of 60 meters, minimum and maximum 
velocity of 5 and 25m/s respectively). In Table I, while the total 
number of nodes is increased from 50 to 500, it is assumed that 
50 % of them are mobile to properly reflect the effect of node 
mobility. Moreover, to examine the effect of the proposed 
algorithm, any islands (not isolated one) including mobile 
nodes more than 5% of the total mobile nodes in a network are 
regarded as a considerable island to ensure that at least one 
mobile node exists in an island. Simulations are run 10 times 
per each node size and the average values of Tlocal are reported. 
Note that for a network with more than 150 nodes, the number 
of islands turns out to be one, which means that all the nodes 
are connected because they get closer. Since the maximum and 
minimum velocity as well as the size of the area are all fixed, 
there is only a small change among reported minimum average 
local relocalization times. As is shown in Table I, when the 
number of nodes is 50 and 100 (smaller than 150), multiple 
islands exist in the network and the average values of Tlocals are 
reported. However, when the number of nodes gets larger (more 
than 150), the calculated Tlocals, are almost identical, resulting 
negligible standard deviation due to the fact that all the nodes 
are connected and there exist just one island. 

 
 

TABLE I   LOCAL RELOCALIZATION TIME TLOCAL FOR 50-500 NODES, INCLUDING 
50% MOBILE NODES 

No. of 
nodes 

No. of 
islands 

Considerable islands, 
including more than 5% 
mobile nodes 

Average local 
Relocalization time 
among main islands  

50 6 3 33.66 
100 3 2 31.35 
150 1 - 29.77 
200 1 - 28.49 
250 1 - 28.94 
300 1 - 27.85 
350 1 - 28.54 
400 1 - 27.68 
450 1 - 27.14 
500 1 - 27.89 
 
Next, the number of nodes is assumed constant (120 nodes), 

but the size of the area varies while the overall density of the 
mobile node is still fixed as 50%. A random-topology network 
is shown in Fig. 10(a) for a 400m×400m area. Table II shows 
the results of Tlocal after the clustering assuming the 
communication range of 60m. By increasing the size of the 
network, the density of nodes decreases because the total 
number of nodes is fixed. To calculate the relocalization time, 
the islands that include more than 5% of mobile nodes are 
considered. For smaller areas such as 400m×400m (Fig. 10 (b)), 
all the nodes are connected within one main island. By 
increasing the size, it is observed that the number of islands 
increases naturally to cover a wider area, but there is a 
significant difference in node density between the islands, since 
the total number of nodes is still fixed; some islands include 
most of the nodes whereas others are not (Fig. 10 (c) and (d)). 
For bigger sizes like Fig. 10 (e) and (f), the fixed number of 
nodes are spread in the bigger area. Therefore, islands get 
smaller and more widely distributed in the area, and some 
mobile nodes do not belong to any island. From the results 
shown in Table II, it is clear that increasing the size of the 
network is a critical factor that affects the average Tlocal, i.e., as 
the size of the network gets larger, Tlocal increases for the fixed 
number of nodes and constant minimum/maximum velocity of 
mobile nodes. Values of Tglobal in Table II are the twice the 
minimum Tlocal according to (29).   Note that the results of Table 
II have been well predicted for the case of RWP model (of 
mobile node).   

 
TABLE II  LOCAL RELOCALIZATION TLOCAL FOR 400M×400M-800M×800M 

AREAS, FOR 120 NODES, INCLUDING 50% MOBILE NODES 
 

Size (m2) Total 
No. of 
islands 

Considerable 
islands, 
including 
more than 5% 
mobile nodes 

Average local 
Relocalization 
time among 
main islands 

Global 
Relocalization 
Time 

400×400 1 1 23.58 46.96 
500×500 6 3 31.60 59.50 
600×600 >5 4 38.04 72.16 
700×700 >10 3 45.98 85.56 
800×800 >15 3 54.23 105.88 

 

 

Initialize Network

Perform TBL

Apply Algorithm 1 
 to find re-localization time

Update node positions 
Applying Movement Patterns

NoYes
1-<< kcurrent TT
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 10.  Change of  the 120 node distribution and cluster formation in different 
network size (a, b) 400m×400m, (c) 500m×500m, (d) 600m×600m, (e) 
700m×700m, (f) 800m×800m 
 

As an additional validation, the topology of the network is 
randomly changed from Fig. 10 (a) to Fig. 11(a) and the 
proposed TBR algorithm is applied mainly to check its 
robustness and the applicability for different random topology. 
The results are demonstrated in Table III and the average Tlocal 

and Tglobal, show the same trend as shown in Table II.   
 
TABLE III  LOCAL RELOCALIZATION TRIGGERING TIME FOR 400M×400M-

800M×800M AREAS, FOR 120 NODES INCLUDING 50% MOBILE NODES 
 

Size (m2) Total 
No. of 
islands 

Considerable 
islands, 
including 
more than 5% 
mobile nodes 

Average local 
Relocalization 
time among 
main islands 

Global 
Relocalization 
time 

400×400 2 1 23.58 46.84 
500×500 5 2 31.14 62.28 
600×600 >5 4 38.01 71.91 
700×700 >10 5 47.19 85.05 
800×800 >15 4 52.28 100.20 
 
 
 
 
 
 
 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 11.  Another change of  the 120 node distribution and cluster formation 
(from Fig.10) in different network size (a, b) 400m×400m, (c) 500m×500m, (d) 
600m×600m, (e) 700m×700m, (f) 800m×800m 

 
The proposed algorithm (Algorithm I) that was tested so far 

is mainly based on the node velocity and area of the simulation 
environment that are similar to the main variables used to 
analytically derive the approximated pdf of relocalization 
triggering time using RWP model ((16) and (18)). The results 
of the network simulation reported in Tables I to III show that 
the estimated local relocalization time Tlocal using network 
simulation is well matched with the analytically predicted 
values based on the pdf of the transition time and the smallest 
variances according to the CRLB. For instance, local triggering 
time according to Fig. 5, considering network dimensions 
400m×400m, 500m×500m and 600m×600m are reported 
around 29, 33 and 37 seconds respectively, which are 
comparable to results of Table III that are 24, 31 and 38 
seconds. Hence, the resulting Tglobal based on (29) will be 
accurate enough. In short, results of the network simulations 
show that having knowledge of the size of the experimental area 
and the history of the node velocity, the local relocalization 
triggering time Tlocal can be calculated as well as Tglobal using 
the proposed TBR algorithm without complicated modeling and 
analysis of the specific node mobility pattern. 

 

B. Localization Error Reduction using TBR Algorithm 
In the previous section A, it is confirmed that Tglobal can be 

successfully identified using the proposed TBR algorithm. 
Based on these results, it is necessary to check the effect of the 
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proposed relocalization algorithm on the localization error of 
the nodes. Fig. 12 (b) shows the random-topology network after 
information flooding from Fig. 12 (a) which is identical to Fig. 
11 (c). Neighboring nodes within the communication range 
would connect as shown by lines in Fig. 12 (b). Some of the 
isolated nodes still cannot find any node in their communication 
range to estimate their locations, therefore, they remain 
unlocalized. The isolated node can be localized only when it 
changes its position to a place where more nodes exist within 
communication range. However, in a dynamic network a node 
can change its position randomly seeking signal from other 
nodes. Similarly, the isolated islands with less than 3 anchor 
nodes are not considered in local error estimation, but 
considered in global error estimation.  As in Fig. 12 (b), there 
are several islands in the network, but just two of them are 
considerable, one of them in the middle of the area (which is 
the main island) and the other is on the top left-side (islands 1 
and 2).  
 

  

Fig. 12.  (a) The selected Random Network topology, (b) Network topology 
after information flooding 
 

In the network of Fig. 12 (b) (size 500m × 500m), 20 of the 
sensors are randomly chosen as the anchors, which are used in 
the localization process [38]. The maximum and minimum 
speed for the RWP movement patterns are chosen as 25m/s and 
5m/s respectively, with no pause time. All trials are run 10 times 
and average values are reported. Without applying the 
algorithm for MWSN, it is assumed that the relocalization will 
start after 200 seconds (Tfix), which is twice 100 sec obtained 
from (12) and the localization error is calculated based on the 
distance between the last and new estimated locations of each 
sensor. The relocalization Mean Square Error after Tfix is called 
MSEold. After applying the TBR algorithm again, relocalization 
Mean Square Errors (MSEnew) are calculated at Tlocal and Tglobal 
that are obtained through the proposed algorithm. To show the 
effectiveness of the proposed algorithm to decrease the 
localization error, the error reduction is calculated according to 
(31). 

                                (31) 

Although the movement pattern is random, the results show 
an improvement in localization error which is demonstrated by 
the percentage of error reduction shown in Tables IV-VI, by 
varying the portion of mobile nodes from 10 to 50%. Tables IV 
and V show the itemized results of applying the proposed 
algorithm in the individual main islands of Fig 12 (b) that 
include more than 10% of the total nodes. In the next step, the 

whole network is localized at Tglobal, which is derived from (29) 
and the corresponding error reduction is shown in Table VI. 
Note that, in all cases of Tables IV and V, the minimum value 
of Tlocals always belongs to island 1 (Table IV) which obviously 
includes more mobile nodes than island 2. Therefore, Tglobals per 
each case listed in Table VI should be the twice the Tlocals of the 
island 1. On the other hand, increasing the number of mobile 
nodes leads to lower error reduction and smaller Tlocal. In Fig. 
13, the first group of curves in the most left side shows the 
results of Tables IV-VI. 

To observe the algorithm behavior for a longer time, the 
simulation runs for three additional rounds of global 
relocalization. Initially, the network topology is the same as 
Fig. 12 (b). But after each relocalization run the nodes move 
and the topology changes randomly. The results in Fig. 13 show 
the MSE reduction versus percentage of mobile nodes (between 
10 to 50%). In Fig. 13, the second group of curves show the 
results of the second global relocalization round and so on. 
Observing the change of MSE for successive rounds proves its 
effectiveness in reducing the localization error for a longer time 
and shows that maximum MSE reduction is less than 35% for 
different percentages of mobile nodes but more than 5%. In 
other words, MSE reduction is bounded between 5 to 35% by 
applying the proposed TBR algorithm and the highest value 
belongs to the case with the least number of mobile nodes, due 
to the existence of the small number of unlocalized nodes.  

 
 TABLE IV  TLOCAL FOR ISLAND 1 AND % OF ERROR REDUCTION USING RWP 

MODEL 
Number of mobile nodes Error reduction Tlocal (sec) 

10%(12 nodes) 27% 31 
20%(24 nodes) 26% 31 
30%(36 nodes) 24% 30 
40%(48 nodes) 12% 30 
50%(60 nodes) 9% 29 

 
TABLE V  TLOCAL FOR ISLAND 2 AND % OF ERROR REDUCTION USING RWP 

MODEL 
Number of mobile nodes Error reduction Tlocal (sec) 

10%(12 nodes) 27% 39 
20%(24 nodes) 25% 33 
30%(20 nodes) 24% 35 
40%(48 nodes) 13% 33 
50%(60 nodes) 7% 33 

 
TABLE VI GLOBAL ERROR REDUCTION PER TGLOBAL  USING RWP MODEL 

 
Number of mobile nodes Error reduction Tglobal (sec) 

10%(12 nodes) 32% 62 
20%(24 nodes) 29% 62 
30%(36 nodes) 26% 60 
40%(48 nodes) 13% 60 
50%(60 nodes) 11% 58 
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Fig. 13.   MSE behavior for four relocalization rounds using RWP pattern 

 
To show the reliability of the proposed algorithm, the 

algorithm is also applied to two other  movement patterns: Levy 
walk [30] and Brownian motion [24].  Results of four 
successive relocalization rounds show the significant error 
reduction in localization error as the case of RWP model.  

Fig. 14 shows the MSE reduction after four successive 
relocalization rounds using Levy Walk pattern. The percentages 
of MSE reduction are bounded between 15 and 60%. Similar to 
the case of RWP model, the highest value belongs to the 
networks with 10% mobile nodes. Note that, since movement 
models are random, no identical curves for all rounds can be 
expected.  

For the Brownian movement pattern, the default time 
duration is the same as the RWP pattern. Fig. 15 shows the 
significant reduction of MSE for Brownian model due to the 
nature of this  movement pattern, where small fluctuations 
around last location lead to the smaller differences between 
MSE reduction values for different percentages of mobile nodes 
compared with the RWP and Levy models. 

 

 
Fig. 14.  MSE behavior of four global relocalization rounds using Levy walk 
pattern 

 

Fig. 15.  MSE behavior for four global relocalization rounds using Brownian 
motion 

V. CONCLUSION 
In this paper, the TBR algorithm was proposed, which can 

provide the best estimate of the global network relocalization 
time for the MWSN considering the node mobility patterns 
including random waypoint as well as the Levy walk and 
Brownian motion. The accuracy of the proposed method was 
initially checked by the mathematical analysis to yield the 
probability density function of RWP that eventually leads to 
approximate a pdf function for relocalization triggering time. 
Additionally, its soundness is checked by Cramer Rao Lower 
Bound (CRLB). The identified global relocalization time, 
which is based on the local relocalization time per island, is an 
optimum time interval to retrigger localization process which 
yield minimum localization error across the individual islands 
of nodes as well as the entire network. This is achieved by 
calculating the optimal time limit before starting relocalization 
by considering physical parameters of the network and node’s 
movement history. The performance of the proposed algorithm 
was thoroughly checked for the random-topology network by 
computer simulations with varying network parameters 
including the number of nodes and the size of the network. 
Results of the network simulation show that the application of 
the proposed algorithm increases network performance by 
decreasing the accumulated localization error in all scenarios 
tested, up to 32% for RWP movement pattern. To check the 
applicability of the proposed algorithm for the extended time 
duration, two additional mobility patterns of Levy walk and 
Brownian motion were used and the simulation results also 
support the effectiveness of the proposed TBR algorithm.  
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